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Abstract. In this paper we propose a new partition algorithm for concave minimization. The basic
structure of the algorithm resembles that of conical algorithms. However, we make extensive use
of the cone decomposition concept and derive decomposition cuts instead of concavity cuts to
perform the bounding operation. Decomposition cuts were introduced in the context of pure cutting
plane algorithms for concave minimization and has been shown to be superior to concavity cuts
in numerical experiments. Thus by using decomposition cuts instead of concavity cuts to perform
the bounding operation, unpromising parts of the feasible region can be excluded from further
explorations at an earlier stage. The proposed successive partition algorithm finds an �-global
optimal solution in a finite number of iterations.
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1. Introduction

In this paper we are concerned with the minimization of a concave function f �x�
with f � �n �→� over a nonempty polytope P with P⊂�n, where � denotes the
set of real numbers. Concave minimization is one of the best studied problems
in global optimization. Apart from numerous direct applications in operations
research, mathematical economics, engineering design, etc., there are several
other types of global optimization problems, like bilinear programming, reverse
convex programming, 0–1 quadratic programming, that can be transformed into
equivalent concave minimization problems. Furthermore, techniques for solving
concave minimization problems play a central role in global optimization. For
details the reader is referred to Benson (1995, 1996), Horst and Tuy (1996) and
Tuy (1998) and references therein.
Most of the difficulties with concave minimization problems arise because such

problems may have a very large, even an exponentially large number of local
optimal solutions (see, e.g., Kalantari 1986), and no local criteria are known that
allow us to determine whether a local optimal solution is also a global one or



192 MARCUS POREMBSKI

not. Pardalos and Schnitger (1988) showed that even a problem as simple as
minimizing a concave quadratic function over a hypercube is � �-hard.
The methods for solving concave minimization problems fall mainly into three

categories: enumerative methods, which also include cutting plane methods; suc-
cessive partition methods; and successive approximation methods (see, e.g., Horst
and Tuy, 1996). The successive partition methods are probably the most popular.
The first successive partition algorithms were proposed by Bali (1973), and Zwart
(1974) which are small modifications of a cone-covering algorithm proposed by
Tuy (1964). Algorithms following the approach of Bali and Zwart are known as
conical algorithms, whereas those algorithms following the approach of Falk and
Soland (1969) are known as rectangular algorithms. Later, Horst (1976) proposed
a third important successive partition algorithm, the simplicial algorithm.
To identify subregions in conical algorithms that do not contain solutions with

an objective value smaller than the incumbent solution and can therefore be
excluded from further explorations, Tuy (1964) introduced concavity cuts, also
known as convexity cuts, intersection cuts and Tuy cuts. Other authors then
applied these cuts in pure cutting plane algorithms for concave minimization
(e.g., Cabot, 1974, Konno, 1976a, b; Horst and Tuy, 1996).
Recently the concavity cut concept has been extended by using cone decompo-

sition to derive cutting planes, called decomposition cuts, which usually eliminate
a much larger portion of the feasible region than concavity cuts (see Poremb-
ski, 1999). First numerical experiments have been quite encouraging. Therefore,
one might expect that replacing concavity cuts by decomposition cuts in coni-
cal algorithms would also result in a substantial acceleration of these algorithms.
In this paper we pursue this notion and propose a new successive partition algo-
rithm based on the typical conical-approach concepts using cone decomposition
and decomposition cuts.
This paper is structured as follows: In the next section we give a brief descrip-

tion of the basic operations of the successive partition algorithm. In Section 3 we
introduce cone decomposition and decomposition cuts. Methods for subdividing
a polytope into subpolytopes in the context of cone decomposition are discussed
in Section 4. A finite successive partition algorithm for concave minimization is
given in Section 5. Results of numerical experiments are reported in Section 6.
Some remarks in Section 7 conclude the paper.

2. Basic Operations

In the following we consider the concave minimization problem

min	f �x� �x∈P
� (1)

where f � �n �→� is concave on �n and P=	x∈�n �Ax�b
 with A∈�m×n and
b∈�m is a polyhedron. For the sake of simplicity we assume that P is bounded
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with dim�P�=n, i.e., P is a full-dimensional polytope, and that f �x� is finite on
�n and not constant on P. Furthermore, we assume that the level sets

L���=	x∈�n �f �x���
 (2)

are closed and bounded for all real numbers �. Note that since f �x� is concave,
the level sets L��� are convex.
A well-known and useful feature of concave minimization problems is that

there exists a vertex of P which is a global optimum (see Mangasarian, 1969,
Theorem 5.2.3). Hence the search for a global optimum can be restricted to the
vertices of P. In this context the concept of star optimum plays the role of local
optimality. A star optimum is a vertex of P, for which no adjacent vertex attains
a smaller objective value. Starting at an arbitrary vertex of P, a star optimum can
be found by checking whether an adjacent vertex has a smaller objective value.
If this is the case, then we go to the adjacent vertex with the smallest value, and
repeat the procedure. Clearly, the process terminates at a star optimum.
Since the number of vertices of the polytope P is finite, the number of star

optima is finite. Let �>0 be a prescribed tolerance and let x̂0 be a star optimum.
Therefore, an algorithm that determines a star optimum x̂k+1 at iteration k+1,
starting with k=0, such that f �x̂k+1�<f�x̂k�−�, or establishes that such a vertex
of P does not exist, terminates after a finite number of iterations with an �-global
optimal solution, i.e. a solution x̂∈P with f �x��f �x̂�−� for all x∈P.
The crux of solving problem (1) with such an algorithm is to determine a point

x̆∈P such that f �x̆�<f̂−�, where f̂ is the value of the best solution known so
far, or to establish that such a point does not exist. When we have found such a
point it is not hard to determine a vertex of P with an objective value not larger
than f �x̆�, and, starting with this vertex, we can find a star optimum x̂ with
f �x̂�<f̂−�. Therefore, in each iteration of the above algorithm we encounter
the following subproblem, called the core problem:

Find x̆∈P with x̆�L�f̂−��
CORE

or establish P ⊂L�f̂−���
In this paper we propose a successive partition algorithm based on cone decom-
position and decomposition cuts for solving this problem. The basic structure of
the algorithm is as follows.
The starting point is a star optimum x0 with f �x0�� f̂ , i.e. x0∈ int�L�f̂−���,

where int�·� denotes the interior of a set. Since x0 is a vertex of P, there exists an
�n�n+1�-submatrix �A0�b0� of �A�b� such that A0 is of full rank and A0x0=b0.
By defining

C�x0� �=	x∈�n �A0x�b0

= x0+cone�u1�����un�� (3)
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where u1�����un∈�n are directions of the edges of C�x0�, we get a P-containing
cone vertexed at x0. Therefore, C�x0� provides an approximation of P. We
decompose the cone C�x0� into 2

t suitable cones of dimension n−t, where t
with 1� t�n denotes the respective level of decomposition, such that the convex
hull of these cones contains P. We then check whether one of the edges of
the cones contains a point of P not contained in L�f̂−��. If this is the case,
then we have solved the core problem. Otherwise we derive a cutting plane with
respect to the cones, the decomposition cut dTx��, that eliminates only points
in P∩int�L�f̂−���. Let

��=max	dTx �x∈P
� and x� �=argmax	dTx �x∈P
�

Thus we have to distinguish among three cases:

Case 1� �>�, and f �x��<f̂−�.
Case 2� ���.
Case 3� �>�, and f �x��� f̂−�.
If we have Case 1, then the core problem is solved since we have found a
point x�∈P with x��L�f̂−��. Case 2 implies P⊂L�f̂−�� and therefore the
core problem is also solved. If we have Case 3, then no statement is possible
and further examinations are necessary. To this end we partition P into two
subpolytopes P1 and P2 such that P=P1∪P2 and P1∩P2=bd�P1�∩bd�P2�, where
bd�·� denotes the boundary of a set. This is done in such a way that from the 2t
cones approximating P we can easily derive 2t cones of dimension n−t for P1
and P2, respectively.
After we have tried to further decompose the 2t cones approximating Pi �i=

1�2� to get a higher level of decomposition ti, i.e., t� ti, we repeat the examination
described above for the subpolytopes P1 and P2, i.e. for each of the polytopes
P1 and P2 we derive a decomposition cut, and if for one of the subpolytopes,
say P1, we again have Case 3, then we partition the subpolytope P1 into two
subpolytopes P1�1 and P1�2, and so on.
The partition process terminates when for at least one subpolytope of P we

have Case 1 or for all subpolytopes of P Case 2. By applying special rules in
the subdivision process we ensure that we get only finite sequences of nested
polytopes. Hence the partition algorithm for solving the core problem is finite, and
so is the corresponding algorithm for solving the concave minimization problem.

3. Cone Decomposition and Decomposition Cuts

In this section we give a brief description of cone decomposition and decompo-
sition cuts, and introduce some new concepts needed for the subdivision process.
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3.1. PSEUDOVERTICES AND CONES

In this section we briefly describe cone decomposition and decomposition cuts.
For details the reader is referred to Porembski (1999). Cone decomposition and
decomposition cuts are extensions of the well-known concavity cut concept.
A concavity cut is derived as follows.
As above, let x0 be a star optimum with f �x0�� f̂ , i.e. x0∈ int�L�f̂−���, and

let x0 be nondegenerate. We consider the cone C�x0�=x0+cone�u1�����un� (see
(3)) and in the first step determine the intersection points Ei��i� of the cone edges
Ei���=x0+�ui, ��0, with bd�L�f̂−���. In the second step we determine a
hyperplane cT�x−x0�=1 containing these intersection points, i.e., cT�Ei��i�−
x0�=1 for i=1�2�����n. Since P⊂C�x0� and L�f̂−�� is convex, with x0 the
concavity cut cT�x−x0��1 eliminates only points of P contained in int�L�f̂−
���, i.e. it is a valid cut. To derive a concavity cut when x0 is degenerate some
small modifications are necessary (see, e.g., Benson, 1999).
A problem with this cut is that the cone C�x0� is, in general, a poor approxi-

mation of the polytope P. Hence the derived concavity cut may eliminate a large
portion of C�x0�∩int�L�f̂−���, but only a small portion of P∩int�L�f̂−���.
To partially overcome this problem we decompose the n-dimensional cone C�x0�
into 2t cones of dimension �n−t�, where t denotes the level of decomposition,
the cones being vertexed in int�L�f̂−���, such that their convex hull contains
P. This convex hull provides an improved approximation of P, allowing us to
derive deeper cutting planes, called decomposition cuts.
For this purpose we extend the notion of a vertex. A vertex x0 of P=	x∈

�n �Ax�b
 is a 0-dimensional face of P. This is equivalent to the conditions
that Ax0�b holds and that there exists an �n�n+1�-submatrix �A0�b0� of �A�b�
such that A0 is of full rank and A0x0=b0, i.e. x0=A−1

0 b0. By dropping the first
condition we can extend this notion to a more general one, as in the following
definition.

DEFINITION 3.1. Let P=	x∈�n �Ax�b
 be a polyhedron with A∈�m×n,
b∈�m and dim�P�=n, and let Ax�b include no constraints aT

i x� i, a
T
j x� j

with �aT
i � i�="�aT

j � j� for some "∈�+\	0
, where �+ denotes the set of
nonnegative real numbers.

1. Let �Ã�b̃� be an �n�n+1�-submatrix of �A�b� such that Ã is of full rank, and
let x̃ be the unique solution of Ãx= b̃. x̃ is called a pseudovertex of P, and
the set of pseudovertices of P is denoted by vertps�P�A�b��.

2. If for x̃∈vertps�P�A�b�� there exists one and only one �n�n+1�-submatrix �Ã�b̃�
of �A�b� such that Ã is of full rank and Ãx̃= b̃, then x̃ is called a nondegenerate
pseudovertex. Otherwise x̃ is a degenerate pseudovertex.

3. If for x̃1�x̃2∈vertps�P�A�b�� there exist �n�n+1�-submatrices �Ã1�b̃1�, �Ã2�b̃2�
of �A�b� such that Ã1 and Ã2 are of full rank, Ã1x̃1=b̃1, Ã2x̃2=b̃2, and �Ã1�b̃1�
and �Ã2�b̃2� differ in exactly one row, then x̃1�x̃2 are neighbors.
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Note that the definitions of degeneracy, nondegeneracy and neighborhood of
pseudovertices are similar to those generally used for vertices. Similar as for
vertices of P, we can derive P-containing cones with respect to pseudovertices.

DEFINITION 3.2. Let x̃∈vertps�P�A�b�� be nondegenerate with Ãx̃= b̃, where
�Ã�b̃� is an �n�n+1�-submatrix of �A�b� such that Ã is of full rank. The cone
C�x̃� derived with respect to the pseudovertex x̃ is defined by

C�x̃� �=	x∈�n � Ãx� b̃

= x̃+cone�ũ1�ũ2�����ũn��

where ũ1�ũ2�����ũn are directions of the edges of C�x̃�.

For the pseudovertices x̃1�x̃2∈vertps�P�A�b��, let us consider the corresponding
cones

C�x̃i�= x̃i+cone�ũ1i �ũ2i �����ũni � i=1�2
and let us denote by

Ei�k=	x̃i+�ũki �� ∈�+
 and E−
i�k���=	x̃i−�ũki �� ∈�+
 (4)

the kth edge of the cone C�x̃i� and its negative extension, respectively.
The following holds. x̃1 and x̃2 are neighbors if and only if x̃1 lies on an edge

or its negative extension of C�x̃2� and x̃2 lies on an edge or its negative extension
of C�x̃1�. There are three possible cases, which lead us to the following types of
neighborhood:

N1-neighborhood: x̃1∈E2�k and x̃2∈E1�k;
N2-neighborhood: x̃1∈E2�k ∧ x̃2∈E−

1�k or x̃1∈E−
2�k ∧ x̃2∈E1�k;

N3-neighborhood: x̃1∈E−
2�k and x̃2∈E−

1�k.

Note that x̃1 and x̃2 lie on a line aff�E1�k�=aff�E2�k�, where aff�·� denotes the
affine hull. Then the N1-, N2- and N3-neighborhoods can be interpreted as x̃1 and
x̃2 ‘facing each other’, x̃1 ‘looking at the back’ of x̃2 or x̃2 ‘looking at the back’
of x̃1, and x̃1 and x̃2 ‘lying back to back’, respectively.
Any cone derived with respect to a pseudovertex of P contains P. Our goal is

to choose a set of pseudovertices in such a way that we can reduce the dimension
of the corresponding cones without losing information about the shape of the
polytope P. To this end we introduce the following concepts.

DEFINITION 3.3. A set S⊆vertps�P�A�b�� of nondegenerate pseudovertices con-
taining no N2-neighbors is called an N -set of vert

ps�P�A�b��. For x̃∈S we denote
by CS�x̃� the face of C�x̃� that is spanned by the vectors ũk such that the edge
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Ek=	x̃+"ũk �"∈�+
 and its negative extension E−
k =	x̃−"ũk �"∈�+
 contain

no pseudovertex in S\	x̃
.
Note that a degenerate pseudovertex can be made nondegenerate by dropping

appropriate constraints from Ax�b.
If x̃i∈S has no neighbors in S, then we have CS�x̃i�=C�x̃i�. However, if

x̃i has t neighbors in S with 0<t�n, then we have dim�CS�x̃i��=n−t. The
construction of the cone CS�x̃i� is motivated by the following theorem.

THEOREM 3.1 (Porembski, 1999, Theorem 3.1). Let P=	x∈�n �Ax�b
 be a
polyhedron with dim�P�=n�2, and let S=	x̃1�x̃2�����x̃%
 �=∅ be an N -set of
vertps�P�A�b��. Then we have

P⊆conv
(
CS�x̃1��CS�x̃2������CS�x̃%�

)
�

The quality of an approximation of P by CS�x̃1��CS�x̃2������CS�x̃%� depends on
the choice of the N -set S. To construct an appropiate N -set S, we apply cone
decomposition, which is described in the following subsection.

3.2. CONE DECOMPOSITION

As we have seen in Theorem 3.1, we can use the cones CS�x̃i�, x̃i∈S, to approx-
imate the polytope P. Our goal is to utilize these cones to derive deep cutting
planes. For this purpose the N -set S has to be chosen in an appropriate way.
To this end we will derive S in a series of steps. Starting with the N -set S0 �=
	x̃1
, we gradually enlarge S0 such that S0⊂S1⊂···⊂Sq⊂ int�L�f̂−���, where
S0�S1�����Sq are N -sets of vert

ps�P�A�b��. Si+1 is derived from Si such that for
x̃i∈Si∩Si+1 the cone CSi+1�x̃i� has one edge less than the cone CSi

�x̃i�.
To construct such N -sets we extend the notion of neighborhood of pseudo-

vertices to cone edges. This is based on the following observation. Let S be an
N -set of vertps�P�A�b��, and let x̃1�x̃2∈S be neighbors. Then the corresponding
�n�n+1�-submatrices �Ã1�b̃1� and �Ã2�b̃2� of full rank of �A�b� differ in only
one row, i.e. there exists an �n−1�n+1�-matrix �Ă�b̆� that is a submatrix of
�Ã1�b̃1� and �Ã2�b̃2�.
For an edge �E1 of the cone C�x̃1�=	x∈�n � Ã1x� b̃1
, n−1 constraints of

Ã1x� b̃1 are binding. If for �E1 all n−1 constraints of Ăx� b̆ are binding, then�E1 or its negative extension contains x̃2. Thus in this case �E1 is not an edge of
CS�x̃1�. Hence for every edge of CS�x̃1� n−2 constraints of Ăx� b̆ are binding.
The same holds for the cone CS�x̃2�. This leads to the following definition.

DEFINITION 3.4. Let P=	x∈�n �Ax�b
 be a polyhedron with dim�P�=n,
and let S be an N -set of vertps�P�A�b��.

1. Let x̃1�x̃2∈S be neighbors. An edge �E1 of CS�x̃1� and an edge �E2 of CS�x̃2�
are called neighbors if there exists an �n−1�n+1�-submatrix �Ă�b̆� of full
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rank of �A�b� such that for �E1 and �E2 the same n−2 constraints of Ăx� b̆ are
binding.

2. Let S=	x̃1�x̃2�����x̃%
, and let RS=	�E1��E2������E%
 be a set of cone edges,
where �Ei is an edge of CS�x̃i�. The set of cone edges RS is N -isomorph if
for every pair x̃i1�x̃i2 ∈S of neighbors the corresponding edges �Ei1��Ei2 ∈RS are
also neighbors.

With the following proposition which is an extension of Theorem 4.2 in Porembski
(1999) we lay the foundation for cone decomposition.

PROPOSITION 3.1. Let P=	x∈�n �Ax�b
 be a polyhedron with dim�P�=n,
let S=	x̃1�x̃2�����x̃%
 be an N -set of vertps�P�A�b��, and let the set of cone edges
RS=	�E1��E2������E%
 be N -isomorph. Furthermore, let aT

j∗x� j∗ and aT
h∗x� h∗

be constraints of Ax�b such that for i�k=1�2�����% the following hold:

(A) aT
j∗ x̃i= j∗ and aT

h∗ x̃i �= h∗;
(B) �Ei⊆	x∈�n �aT

j∗x� j∗
 and �Ei �⊆	x∈�n �aT
j∗x= j∗
;

(C) The hyperplane aT
h∗x= h∗ intersects �Ei∪�E−

i at a point x̃%+i, where if it
intersects �Ei, then aT

h∗ x̃i < h∗; otherwise a
T
h∗ x̃i > h∗;

(D) For x̃%+i exactly n constraints of Ax�b are binding;
(E) x̃%+i �= x̃%+k for i �=k.
Let S ′ �=	x̃%+1�x̃%+2�����x̃2%
 and let Ŝ �=S∪S ′. Then the following hold:

1. Ŝ is an N -set of vertps�P�A�b��.
2. For x̃i∈S the pseudovertex x̃%+i is the only neighbor in S ′, and for x̃%+i∈S ′

the pseudovertex x̃i is the only neighbor in S.
3. x̃i�x̃k∈S are neighbors if and only if x̃%+i�x̃%+k∈S ′ are neighbors.
4. dim�CŜ�x̃i��=dim�CŜ�x̃%+i��=dim�CS�x̃i��−1 for all x̃i∈S, x̃%+i∈S ′.

For the purpose of simplification an N -isomorph set can be seen as a collection of
cone edges pointing in a similar direction. Then Proposition 3.1 can be interpreted
as follows. Let there exist a hyperplane aT

j∗x= j∗, called a base hyperplane,
containing all pseudovertices in S (see condition (A)), and let us consider an
N -isomorph set of cone edges pointing in the direction aj∗ (see condition (B)).
Then a hyperplane aT

h∗x= h∗, called a mirror hyperplane, intersecting these
cone edges in pairwise distinct points (see condition (E)) defines a new set of
pseudovertices such that each of the ‘old’ pseudovertices is a neighbor of exactly
one ‘new’ pseudovertex and vice versa.
The set of new pseudovertices mirrors the neighborhood relations in the set

of old pseudovertices in the sense that two pseudovertices in the old set are
neighbors if and only if the corresponding pseudovertices in the new set are neigh-
bors. However, the neighborhood relation might change from N1-neighborhood
to N3-neighborhood and vice versa. It is not hard to verify that if the new pseudo-
vertices are nondegenerate (condition (D)), the set of new pseudovertices is also
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an N -set. Condition (C) ensures that we can merge the sets of old and new
pseudovertices without getting N2-neighborhood relations.
Based on the concepts introduced above, we derive an appropriate N -set S

by the following procedure, where depth is a prechosen maximal decomposition
depth, �Ei=	x̃i+"ũi�ji �"∈�+
 an edge of CSt

�x̃i�, and �E−
i its negative extension.

Cone Decomposition Procedure (CDP)
Set S0 �=	x̃1
 with x̃1 �=x0;
Set deco �= true and t �=0;
While (deco and t<depth) do
if there exists an N -isomorph set of cone edges RSt =

	�E1��E2������E2t 
 and a constraint aT
h∗t x� h∗t of Ax�b such that

for i�k=1�2�����2t, the following conditions hold:
1. aT

h∗t x= h∗t intersects �Ei∪�E−
i at a point x̃2t+i∈ int�L�f̂−���;

2. if aT
h∗t x= h∗t intersects �Ei, then aT

h∗t x̃i < h∗t ; otherwise a
T
h∗t x̃i >

 h∗t ;
3. for x̃2t+i exactly n constraints of Ax�b are binding;
4. x̃2t+i �= x̃2t+k for i �=k;

then set St+1 �=St∪	x̃2t+1�x̃2t+2�����x̃2t+1
 and t �= t+1;
else set deco �=false;

Set S �=St.

How CDP works is illustrated by the following simple example which is also
taken from Porembski (1999).

EXAMPLE 3.1. Given a polyhedron P and a nondegenerate vertex x0 of P
with x0∈ int�L�f̂−���, L�f̂−�� has been omitted in Figure 1a, but the inter-
section points of the boundary of L�f̂−�� and the edges of the respective
cones are indicated by dots. In CDP we start with an N -set S0=	x̃1
, where
x̃1 �=x0, and a cone CS0

�x̃1�= x̃1+cone�ũ1�1�ũ1�2�ũ1�3� (see Figure 1a). There
exist three N -isomorph sets Rj

S0
=	E1�j
 (j=1�2�3). All these sets fulfill the if-

conditions of CDP. We choose R3
S0
and the constraint that describes the right

facet of P. By CDP we get an N -set S1=	x̃1�x̃2
 and the cones CS1
�x̃1�=

x̃1+cone�ũ1�1�ũ1�2� and CS1
�x̃2�= x̃2+cone�ũ2�1�ũ2�2� (see Figure 1b). We have

P⊆conv�CS1
�x̃1��CS1

�x̃2��. There exist two N -isomorph sets R
j
S1
=	E1�j�E2�j


(j=1�2). By choosing R2
S1
and the constraint describing the front facet of P

we get S2=	x̃1�x̃2�x̃3�x̃4
 and CS2
�x̃i�= x̃i+cone�ũi�1� with i=1�2�3�4 (see Fig-

ure 1c). We have P⊆conv�CS2
�x̃1��CS2

�x̃2��CS2
�x̃3��CS2

�x̃4��. There exists only
one N -isomorph set RS2

=	E1�1�E2�1�E3�1�E4�1
. Since there exists no P-describing
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Figure 1. Decomposition of the cone C�x̃1� by CDP.

constraint that together with RS2 fulfills the if-conditions of CDP, CDP stops with
S �=S2⊆ int�L�f̂−���. �

In CDP we assume that the mirror-hyperplane-defining constraint aT
h∗t x� h∗t

is contained in the P-describing system Ax�b. But sometimes such a CDP-
conditions-fulfilling constraint is not available. One way to define such a con-
straint is to determine a supporting hyperplane of P. Note that any supporting
hyperplane aTx= of P is a positive linear combination of facets of P-describing
hyperplanes, i.e. there exists v�0 with a=vTA and  =vTb. Therefore, to get a
constraint âTx�  ̂ fulfilling condition 1 to 4 in a first step we determine the inter-
section points �Ei��i�k� �= x̃i+�i�kũi�k and �E−

i ��
−
i�k� �= x̃i−�−i�kũi�k of �Ei∈RSt

and �E−
i

with bd�L�f̂−���, respectively. In a second step we determine a solution v̂�0
of

vTA�Ei��i��vTb
vTA�E−

i ��
−
i ��v

Tb
for i=1�2�����2t�

if one exists, set â �= v̂TA and  ̂ �= v̂Tb, and check whether âTx�  ̂ fulfills
conditions 3 and 4 of CDP, which is, in general, the case.
In CDP the mirror constraint aT

h∗t x� h∗t of Proposition 3.1 has to be explicitly
chosen, whereas the base constraint aT

j∗t x� j∗t is implicitly determined by the
choice of the N -isomorph set RSt

, which can be seen by the proof of the following
proposition.

PROPOSITION 3.2. Let S0 �=	x̃1
⊂vertps�P�A�b�� be the starting N -set of CDP
and let �Ã1�b̃1� be the corresponding �n�n+1�-submatrix of full rank of �A�b�
such that Ã1x̃1= b̃1. For the cones CSt

�x̃i�, x̃i∈St, derived in the tth iteration of
CDP we have

CSt
�x̃i�=	x∈�n � Ã1t x� b̃1t �Git

x=hit 
�
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where �Ã1t �b̃1t � is an �n−t�n+1�-submatrix of �Ã1�b̃1� and �Git
�hit � is an

�t�n+1�-submatrix of �A�b�, and �ÃT
1t
�GT

it
� is of full rank.

Proof. We prove the proposition by induction in t. For t=0 the proposition
obviously holds. Suppose it also holds for a decomposition depth up to t−1, where
t�1. Then for x̃i∈St−1=	x̃1�x̃2�����x̃2t−1
 we have CSt−1�x̃i�=	x∈�n � Ã1t−1x�
b̃1t−1�Git−1x=hit−1
. Suppose that RSt−1 �=	�E1������E2t−1
 is N -isomorph. For an
edge �Ei∈RSt−1 exactly one constraint of Ã1t−1x� b̃1t−1 is not binding. Because
of condition (B) in Proposition 3.1 we can assume without lost of generality
(w.l.o.g.) that for i=1�2�����2t−1 we have

�Ei=	x∈�n � ãT
1t−1�1x�  ̃1t−1�1� Ã1t−1\	1
x= b̃1t−1\	1
�

Git−1x=hit−1
� (5)

where ãT
1t−1�1x�  ̃1t−1�1 denotes the first row of Ã1t−1x� b̃1t−1 and Ã1t−1\	1
x=

b̃1t−1\	1
 denotes the system we obtain by eliminating this row from Ã1t−1x= b̃1t−1 ,
i.e. ãT

1t−1�1x=  ̃1t−1�1 plays the role of the base hyperplane. Furthermore, suppose
that aT

h∗t−1
x� h∗t−1 fulfills the CDP conditions, i.e. a

T
h∗t−1

x= h∗t−1 is the mirror
hyperplane. The unique intersection point of the mirror hyperplane aT

h∗t−1
x= h∗t−1

with �Ei or �E−
i defines the pseudovertex x̃2t−1+i. Hence we have a

T
h∗t−1

x̃2t−1+i= h∗t−1 ,
Ã1t−1\	1
x̃2t−1+i= b̃1t−1\	1
 and GT

it−1 x̃2t−1+i=hit−1 .
By construction �ah∗t−1�Ã

T
lt−1\	1
�Git−1�

T is an �n�n�-submatrix of A of full rank
and x̃2t−1+i is a nondegenerate pseudovertex. Nondegenerate pseudovertices x̃i
and x̃j are neighbors if and only if x̃i lies on an edge or its negative extension
of C�x̃j� and x̃j lies on an edge or its negative extension of C�x̃i�. Hence for
i=1�2�����2t we have

CSt
�x̃i�=	x∈�n � ãT

1t−1�1x=  ̃1t−1�1� Ã1t−1\	1
x� b̃1t−1\	1
�Git−1x=hit−1
 (6)

and

CSt
�x̃2t+i�=	x∈�n �aT

h∗t−1
x= h∗t−1� Ã1t−1\	1
x� b̃1t−1\	1
� Git−1x=hit−1
� (7)

which follows from Propositions 3.1.2 and 3.1.3. By defining Ã1t �= Ã1t−1\	1
,
b̃1t �= b̃1t−1\	1
,

GT
it
�=�GT

it−1�ã1t−1�1� hT
it
�=�hT

it−1� ̃1t−1�1� (8)

for i=1�2�����2t−1 and
GT
it
�=�GT

it−1�ah∗t−1� hT
it
�=�hT

it−1� h∗t−1� (9)

for i=2t−1+1�2t−1+2�����2t we have proved Proposition 3.2. �
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By Proposition 3.2 we have Ã1t x̃i= b̃1t , Git
x̃i=hit for all x̃i∈St. Since the

system Ã1t x̃i= b̃1t is independent of the respective pseudovertex and the pseudo-
vertices in S are nondegenerate, the following holds.

COROLLARY 3.1. x̃i�x̃j ∈St are neighbors if and only if �Git
�hit � and �Gjt

�hjt �
differ in exactly one row.

In the following proposition we describe some properties of the systems Git
x=

hit that are useful for the subdivision methods discussed in the next section.

PROPOSITION 3.3. Let St �=	x̃1�x̃2�����x̃2t 
 be an N -set of vertps�P�A�b�� derived
by CDP and let CSt

�x̃i�=	x∈�n � Ã1t x� b̃1t �Git
x=hit 
. For sets Sit�k defined

by Sit�k �=St∩	x∈�n �gT
it �k
x=3it�k
, where gT

it �k
x=3it�k denotes the kth row of

Git
x=hit , the following hold.

1. �Sit�k�=2t−1 for i=1�2�����2t and k=1�2�����t.
2. For x̃i∈St there exists for each row of Git

x=hit exactly one pseudovertex
x̃j ∈St, such that Git

x=hit and Gjt
x=hjt differ only in this row.

3. If Git
x=hit and Gjt

x=hjt differ only in the kth row, then we have St=
Sit�k∪Sjt�k and Sit�k∩Sjt�k=∅, i.e. the sets Sit�k and Sjt�k can be interpreted as
sets containing base pseudovertices and mirror pseudovertices, respectively.

Proof. In each iteration of CDP but the last we perform a cone decomposition
by choosing an N -isomorph set RSr

and a mirror hyerplane aT
h∗r x= h∗r . On one

hand, each of the sets RSr
contains a unique edge of the starting cone CS0

�x̃1�=
x̃1+cone�ũ1�1�ũ1�2�����ũ1�n�. On the other hand, by choosing an edge E1�ir of
CS0

�x̃1� that is still an edge of CSr
�x̃1�, we have uniquely determined the set

RSr
. Hence we can uniquely describe the sequence of decompositions in CDP

by a sequence of edges E1�i1�E1�i2�����E1�it of CS0
�x̃1� and corresponding mirror

hyperplanes aT
h∗1
x= h∗1�aT

h∗2
x= h∗2�����aT

h∗t x= h∗t , i.e. the sequence �E1�ir �aT
h∗rx=

 h∗r �
t
r=1 uniquely determines the resulting N -set St. It is not hard to verify that

each permutation of this sequence results in the same N -set St. Hence we can
assume w.l.o.g. that the kth row of Git

x=hit was derived at the tth iteration (see
(8) and (9)), i.e. k= t, and that RSt−1=	E1�1�E2�1�����E2t−1�1
. With this we now
prove the first assertion of Proposition 3.3.

(1) According to (8) and (9), gT
it �t
x=3it�t is identical either with ãT

1t−1�1x=  ̃1t−1�1
or with aT

h∗t−1
x= ht−1 . In the first case we have gT

it �t
x̃j=3it�t for all x̃j ∈St−1

and in the second we have gT
it �t
x̃j=3it�t for all x̃j ∈St\St−1. Since aT

h∗t−1
x=

 h∗t−1 has to fulfill the conditions in CDP, we have ã
T
1t−1�1x̃j �=  ̃1t−1�1 for all

x̃j ∈St\St−1 and aT
h∗t−1

x̃j �= h∗t−1 for all x̃j ∈St−1. This implies that either Sit�t=
St−1 or Sit�t=St \St−1 holds. Because of �St−1�=�St\St−1�=2t−1 this proves
Proposition 3.3.1.
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(2) To prove Proposition 3.3.2 we consider the last row of Git
x=hit . It follows

from the definition of Git
x=hit in (8) and (9) that Git

x=hit and Gjt
x=

hjt differ only in the last row, where j=2t−1+i in the case of x̃i∈St−1
and j= i−2t−1 otherwise. Let us denote by Git\	t
x=hit\	t
 the system that
we obtain by eliminating the tth row of Git

x=hit . The set 	x∈�n � Ã1t x=
b̃1t �Git\	t
x=hit\	t

 describes a line in �n, and the unique intersection points
of the hyperplanes gT

it �t
x=3it�t and gT

jt �t
x=3jt�t with this line define x̃i and

x̃j , respectively. We have Git\	t
x̃k �=hit\	t
 for all x̃k∈St\	x̃i�x̃j
, because
otherwise 	x̃i�x̃j�x̃k
 would contain at least one pair of N2-neighbors, which
is a contradiction since St is an N -set. Hence x̃j is the only pseudovertex in
St such that Git

x=hit , and Gjt
x=hjt differ only in the last row. This proves

Proposition 3.3.2.
(3) To prove the last part of the proposition we assume that w.l.o.g. i<j and
that Git

x=hit and Gjt
x=hjt differ only in the last row. Hence we have

j=2t−1+i. gT
it �t
x=3it�t is identical with ãT

1t−1�1x=  ̃1t−1�1, and gT
jt �t
x=3jt�t is

identical with aT
h∗t x= h∗t . Hence we have Sit�t=St−1 and Sjt�t=St\St−1, which

proves Proposition 3.3.3. �

3.3. DECOMPOSITION CUTS

When CDP stops we have an N -set S=	x̃1�x̃2�����x̃2t 
 of vertps�P�A�b�� such that
the corresponding cones CS�x̃i� are �n−t�-dimensional and vertexed in int�L�f̂−
���. In the case of t=n we have CS�x̃i�= x̃i∈ int�L�f̂−��� and by Theorem 3.1
we have P⊂conv�S�⊂ int�L�f̂−���. Hence in this case we have solved the core
problem since we have verified that there exists no x̆∈P with x̆ �∈L�f̂−��.
In the case of t<n we want to derive a cutting plane that eliminates as large

a portion of P as possible. As was proved in Porembski (1999), Proposition
5.1, a cutting plane dTx�� that intersects for all x̃i∈S, similar to a concavity
cut, the edges of CS�x̃i� in L�f̂−�� is a valid cut, i.e. it eliminates no point in
P \int�L�f̂−���. Since our aim is to derive a deep cutting plane, we try to derive
a cut that eliminates as much as possible of each of the cones CS�x̃i�. To this end
we determine the barycenter

x̄= 1
2t

2t∑
i=1
x̃i (10)

of the pseudovertices in S and the ‘average’ direction

v̄ �= 1

2t�n−t�
2t∑
i=1

n−t∑
k=1

ũi�k
�ũi�k�

(11)

of the cone edges of CS�x̃1��CS�x̃2������CS�x̃2t �. Then we determine the decom-
position cut dTx�� such that the corresponding hyperplane dTx=� intersects
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Figure 2. Decomposition cuts derived w.r.t. different decomposition depths.

all cone edges in L�f̂−�� and thereby maximizes the distance between x̄ and its
intersection point with the ray x̄+"v̄, "�0. This can be done with the following
linear program.

minimize dTv̄
subject to −dTx̄+� = 1

dTx̃i−� �−4 for i=1�2�����2t
dTEi�k��i�k�−� � 0 for i=1�2�����2t� k=1�2�����t�

(12)

where Ei�k��i�k� denotes the intersection point of the kth edge of CSt
�x̃i� with

bd�L�f̂−��� and 4>0 is a sufficiently small constant ensuring that the resulting
cut eliminates all x̃i∈S.
In general, the greater the decomposition depth t of cone decomposition, the

deeper the corresponding decomposition cut turns out to be. This is also illustrated
for the cases t=1, t=2, and t=3 in Figure 2 (see Example 3.1). Some results
from computational experiments are reported in Porembski (1999).

4. Subdivision Methods

4.1. BASIC STRATEGIES

Let S0=	x̃1
 be the initial N -set of CDP, and let

CS0
�x̃1� �=	x∈�n � Ã1x� b̃1
� (13)

Suppose that CDP decomposed the cone CS0
�x̃1� into 2

t cones CSt
�x̃i� with

dim�CSt
�x̃i��=n−t. According to Proposition 3.2, for x̃i∈St=	x̃1�x̃2�����x̃2t 
 we

have

CSt
�x̃i�= x̃i+cone�ũi�1�ũi�2�����ũi�n−t�

=	x∈�n � Ã1t x� b̃1t �Git
x=hit 
� (14)
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Figure 3. Subdivision between the cones and subdivision within the cones.

where �Ã1t �b̃1t � is an �n−t�n+1�-submatrix of �Ã1�b̃1� and �Git
�hit � is a

�t�n+1�-submatrix of �A�b�. Suppose that none of the edges of the cones
CSt
�x̃1��CSt

�x̃2������CSt
�x̃2t � contains a point of P \L�f̂−�� and that for the

decomposition cut derived with respect to these cones Case 3 of Section 2 holds,
i.e. we have not found a solution with an objective value smaller than the best
solution known so far, and we have not yet been able to verify P⊂L�f̂−��.
For a further exploration we determine an appropriate hyperplane pTx=5

with P∩	x∈�n �pTx<5
 �=∅ and P∩	x∈�n �pTx>5
 �=∅ and subdivide P
into subpolytopes P1 and P2 by defining

P1 �=P∩	x∈�n �pTx�5
 and P2 �=P∩	x∈�n �pTx�5
� (15)

To ensure that we can easily derive from the cones CSt
�x̃i� used to approximate

P cones that can be used for a good approximation of P1 and P2, respectively,
we propose two methods for determining the partition hyperplane pTx=5.
In the first, called subdivision between the cones, we derive pTx=5 as a

combination of two equalities contained in the systems Git
x=hit , i=1�2�����2t

(see (14)), such that pTx=5 divides St into subsets Si0t �k and Sj0t �k with St=
Si0t �k

∪Sj0t �k, Si0t �k∩Sj0t �k=∅ and pTxi<5 for all xi∈Si0t �k and pTxj >5 for all
xj ∈Sj0t �k (see Proposition 3.3). It follows from Proposition 3.3.2 that each xi∈
Si0t �k

has exactly one neighbor xj ∈Sj0t �k. We derive new pseudovertices with
corresponding cones by convex combinations of such neighboring pseudovertices
and cones. This is illustrated in Figure 3a, where we have indicated the partition
plane pTx=5, the new pseudovertex x̃i�j , and the corresponding cone. Suppose
that St=	x̃1�x̃2
. Then P1 and P2 can be approximated by the convex hull of
CSt
�x̃1� and the new cone and by the convex hull of CSt

�x̃2� and the new cone,
respectively.
In the second subdivision method proposed, called subdivision within the cones,

we derive pTx=5 as a combination of two inequalities contained in the system
A1t x�b1t (see (14)). By doing so we partition P into subpolytopes P1 and P2 such
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that each cone CSt
�x̃i�, x̃i∈St is partitioned into two subcones. This is illustrated

in Figure 3b. Then P1 can be approximated by the convex hull of the collection of
subcones contained in the halfspace pTx�5, and P2 can be approximated by the
convex hull of the collection of subcones contained in the halfspace pTx�5. In
this method the N -set for the subpolytopes remains unchanged. In the following
we discuss the two subdivision methods in detail.

4.2. SUBDIVISION BETWEEN THE CONES

In subdivision between the cones we make use of the properties of the sys-
tems Git

x=hit , i=1�2�����2t, described in Proposition 3.3 to derive the partition
hyperplane pTx=5. This is done as follows.
Step 1� Choose a pair of neighbors x̃i0�x̃j0 ∈St.
Step 2� Suppose that Gi0t

x=hi0t and Gj0t
x=hj0t differ in the kth row.

Then define Si0t �k �=St∩	x∈�n �gT
i0t �k

x=3i0t �k
 and Sj0t �k �=St∩	x∈�n �
gT
j0t �k

x=3j0t �k
.
Step 3� Choose "̂ with 0<"̂<1 and derive the partition hyperplane pTx=5 by

defining p �= "̂�−gi0t �k�+�1−"̂�gj0t �k, and 5 �= "̂�−3i0t �k�+�1−"̂�3j0t �k.
Step 4� Define with pTx=5 the subpolytopes P1 and P2 according to (15).
Step 5� For all neighbors x̃i�x̃j ∈St with x̃i∈Si0t �k and x̃j ∈Sj0t �k determine

"i�j=
5−pTx̃j

pTx̃i−pTx̃j
�

set x̃i�j �="i�j x̃i+�1−"i�j�x̃j , and define S�i0�j0�t �=	x̃i�j � x̃i∈Si0t �k�x̃j ∈
Sj0t �k are neighbors
.

Step 6� Finally, set S�1�t �=Si0t �k∪S�i0�j0�t and S�2�t �=Sj0t �k∪S�i0�j0�t .
The following holds.

THEOREM 4.1. Let the P1- and P2-describing systems A1x�b1 and A2x�b2
be obtained from Ax�b by adding the constraints pTx�5 and −pTx�−5,
respectively. Then S

�1�
t is an N -set of vertps�P1�A1�b1�� and S

�2�
t is an N -set of

vertps�P2�A2�b2��. Furthermore, we have S�1�t �S
�2�
t ⊂ int�L�f̂−��� and

dim�C
S
�1�
t
�x̃i��=dim�CS

�2�
t
�x̃j��=n−t

for all x̃i∈S�1�t � x̃j ∈S�2�t .
Proof. We prove Theorem 4.1 for S�1�t ⊂vertps�P1�A1�b1��. For S�2�t the assertions

follow analogously. Since the P1-describing system A1x�b1 was derived from
the P-describing system Ax�b by adding the constraint pTx�5, St is also an
N -set of vertps�P1�A1�b1��. Therefore, Si0t �k is also an N -set of vert

ps�P1�A1�b1�� since
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Si0t �k⊂St and any subset of an N -set is also an N -set. Furthermore, it follows from
Proposition 3.3.2 that for each x̃i∈Si0t �k there is exactly one x̃j ∈Sj0t �k such that x̃i
and x̃j are neighbors. Hence we have dim�CSi0t �k

�x̃i��=n−�t−1� for all x̃i∈Si0t �k,
and for each of the cones CSi0t �k

�x̃i� there is a uniquely determined cone edge Ei�k
such that the following holds. If x̃i∈Si0t �k and x̃j ∈Sj0t �k are N1-neighbors, then
x̃j lies on Ei�k, and if x̃i and x̃j are N3-neighbors, then x̃j lies on E

−
i�k. The cone

edges Ei�k can be represented as follows.

Ei�k=	x∈�n � Ã1t x= b̃1t �Git\	k
x=hit\	k
� gT
i0t �k

� x�3i0t �k

� (16)

where gT
i0t �k

x�3i0t �k
denotes the kth inequality in Gi0t

x�hi0t
.

Let us assume w.l.o.g. Si0t �k �=	x̃1�x̃2�����x̃2t−1
. Then we can verify with (16)
that the set of cone edges RSi0t �k

�=	E1�k�E2�k�����E2t−1�k
 is N -isomorph (see
Definition 3.4 and Corollary 3.1). By construction the partition hyperplane pTx=
5 intersects Ei�k∈RSi0t �k

at x̃i�j ∈conv�x̃i�x̃j�⊂ int�L�f̂−��� if x̃i∈Si0t �k and x̃j ∈
Sj0t �k are N1-neighbors and it intersects E

−
i�k at x̃i�j ∈conv�x̃i�x̃j�⊂ int�L�f̂−���

if x̃i and x̃j are N3-neighbors, implying p
Tx̃i <5 and p

Tx̃i >5, respectively.
By setting S �=Si0t �k, choosing gT

i0�k
x�3i0�k as the base constraint a

T
j∗x� j∗ ,

pTx�5 as the mirror constraint aT
h∗x� h∗ and the N -isomorph set RS �=

	E1�k�E2�k�����E2t−1�k
 in Proposition 3.1 all assumptions of the proposition are
fulfilled. By applying Proposition 3.1 we get the set S�1�t defined in Step 6 with
S
�1�
t ⊂ int�L�f̂−���, and the assertions of the proposition follow for S�1�t from
Propositions 3.1.1 and 3.1.4. �

By subdividing between the cones we partition P into subpolytopes P1 and
P2 and for these subpolytopes derive N -sets S

�1�
t and S�2�t , respectively. Let us

consider the subpolytope P1 with N -set S
�1�
t . We can derive a decomposition cut

with respect to P1 and S
�1�
t . If for this decomposition cut we face again Case 3

(see Section 2), then there are two options, partition P1 again or to try to achieve
a higher level of decomposition, i.e., to enlarge the N -set S�1�t . If we achieve a
higher level of decomposition, if necessary by adding redundant constraints to
the P1-describing system, then we can derive a new decomposition cut that, in
general, covers a larger portion of P1 than the previous cut. However, if for this
new decomposition cut we again face Case 3 and there is no way to achieve a
higher level of decomposition, then we have to partition the subpolytope P1 into
smaller subpolytopes.
Hence by subdividing and decomposing we get sequences of nested sub-

polytopes

P �=P�0�⊃P�1�⊃···⊃P�r�� (17)

called filters, with corresponding N -sets S�%�t% of vert
ps�P

�%�

�A�%��b�%��
�, %=1�2�����r ,

where the subscript of S�%�t% indicates �S�%�t% �=2t% . To get finite convergence of such
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a successive partition process we have to ensure that only finite sequences of
nested subpolytopes (17) are constructed.
To this end we choose x̃�%�i0 �x̃

�%�

j0
in Step 2 and "̂�%� in Step 3 in such a way that

after a finite number of subdivisions either one of the edges of the corresponding
cones contains x̆∈P \L�f̂−��, i.e. we have solved the core problem, or a further
decomposition of the cones is possible, i.e. we can extend the N -set S�%�t% to an N -set
S
�%�

t′%
with �S�%�

t′%
��2�S�%�t% �. Therefore, if we do not identify an x̆∈P \L�f̂−��, then

after a finite number of subdivisions we get an N -set S�r�tr with tr=n, i.e. �S�r�tr �=2n
and C

S
�r�
tr

�x̃i�= x̃i for all x̃i∈S�r�tr , which implies by Theorem 3.1 P�r�⊂conv�S�r�tr �⊂
int�L�f̂−��. Hence P�r� can be skipped from further explorations. Therefore,
only finite filters are derived.
One way to choose x̃�%�i0 �x̃

�%�

j0
∈S�%�t% in Step 2 and "̂�%� in Step 3 is as follows:

Choose x̃�%�i0 and x̃
�%�

j0
such that

�x̃�%�i0 − x̃�%�j0 �=max
{�x̃�%�i − x̃�%�j �� x̃�%�i �x̃�%�j ∈S�%�t% are neighbors

}
� (18)

where �·� denotes the Euclidian norm, and choose "̂�%� such that with 4�%�j0�k �=
3j0t �k

−gT
j0t �k

x̃
�%�

i0
and 4�%�i0�k �=3i0t �k−gT

i0t �k
x̃
�%�

j0

�4
�%�

j0�k

�1−��4�%�i0�k+�4�%�j0�k
� "̂�%� �

�1−��4�%�j0�k
�4

�%�

i0�k
+�1−��4�%�j0�k

(19)

holds, where �∈� with 0<�� 1
2 is a prechosen constant. Then we have 0<

"̂�%�<1 and with increasing � the lower bound in (19) increases and the upper
bound decreases. For �= 1

2 the lower and upper bounds are identical. (19) ensures
that in Step 5

0<"�%�i�j <1 and ��"
�%�

i0�j0
�1−� (20)

hold which is necessary to ensure convergence of the algorithm as can be seen
in the proof of the following lemma.

LEMMA 4.1. Let P �=P�0�⊃P�1�⊃···⊃P�r� be a filter with N -sets S�0�t0 �S
�1�
t1 ����,

S
�r�
tr , and let P�s�⊃P�s+1�⊃···⊃P�r� be a subsequence such that the corresponding
N -sets S�s�ts �S

�s+1�
ts+1 �����S

�r�
tr contain the same number of pseudovertices, i.e., ts=

ts+1=···= tr .
If in Step 2 x

�%�

i0
�x

�%�

j0
∈S�%�t and in Step 3 "̂�%�, %=s�s+1�����r , are chosen

according to (18) and (19), respectively, then there exists x̄∈L�f̂−�� such that
limr→��x̃�r�i − x̄�=0 for all x̃�r�i ∈S�r�tr .
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Proof. Let us assume w.l.o.g. that we have x̃�%+1�i = x̃�%�i and x̃�%+1�j ="�%�i�j x̃�%�i +�1−
"
�%�

i�j�x̃
�%�

j (see Step 5). It follows from (20) that for all neighboring x̃
�%�

i �x̃
�%�

j ∈S�%�t%
with x̃�%�i ∈S�%�i0t% �k% and x̃

�%�

j ∈S�%�j0t% �k%
�x̃�%+1�i − x̃�%+1�j �=�1−"�%�i�j��x̃�%�i − x̃�%�j �< �x̃�%�i − x̃�%�j � (21)

holds. Furthermore, we have

�x̃�%+1�i0
− x̃�%+1�j0

���1−���x̃�%�i0 − x̃�%�j0 �� (22)

Since in S�%�t% we have exactly ĉ �=�n−t�2t−1 neighborhood relations, after at most
ĉ subdivisions we have

max
{�x̃�%+ĉ�i − x̃�%+ĉ�j � � x̃�%+ĉ�i �x̃

�%+ĉ�
j ∈S�%+ĉ�t%

are neighbors
}

��1−��max{�x̃�%�i − x̃�%�j � � x̃�%�i �x̃�%�j ∈S�%�t% are neighbors
}
�

This implies

lim
r→�
max

{�x̃�r�i −x̃�r�j � � x̃�r�i �x̃�r�j ∈S�r�tr are neighbors
}=0� (23)

Hence for neighboring x̃�r�i �x̃
�r�

j ∈S�r�tr we have
lim
r→�

�x̃�r�i −x̃�r�j �=0� (24)

Now let x̃�%�i �x̃
�%�

j ∈S�%�t% be arbitrarily chosen. By construction of CDP there exists
a ‘path’ x̃�%�i =� x̃�%�i0 �x̃�%�i1 �����x̃�%�it% �= x̃

�%�

j ∈S�%�t% such that x̃�%�ik and x̃�%�ik+1 are neighbors.
In Figure 1c, for instance, x̃1�x̃2�x̃4 defines such a path from x̃1 to x̃4. Because
of (24) and �x̃�%�i − x̃�%�j ��∑t%−1

k=1 �x̃�%�ik −x̃�%�ik+1� we therefore have limr→�
�x̃�r�i −x̃�r�j �=0.

Hence there exists x̄ such that lim
r→�

�x̃�r�i −x̄�=0.
Since x̄∈conv�S�%�t �⊂ int�L�f̂−��� for %=s�s+1�����r , we have x̄∈

L�f̂−��. �

We have just verified that in a subdivision process in which no further cone
decomposition is performed the pseudovertices in S�%�t% converge to a point in
L�f̂−��. In a next step we want to extend these considerations to the extreme
rays of the corresponding cones. To this end we introduce the following definition.

DEFINITION 4.1. A sequence of rays E�%�=	x�%�+"u�%� �"∈�+
 is said to
converge to the ray �E=	x̄+"ū �"∈�+
 for %→�, if

lim
%→�

�x�%�− x̄�=0 and lim
%→�

∥∥∥∥ u�%�

�u�%�� −
ū

�ū�
∥∥∥∥=0�
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The following holds:

LEMMA 4.2. Under the assumptions of Lemma 4.1 let

R
�1�

S
�%�
t%

�R
�2�

S
�%�
t%

�����R
�n−t%�
S
�%�
t%

with R
�k�

S
�%�
t%

=	E�%�

1�k�E
�%�

2�k�����E
�%�

2t% �k

�

k=1�2�����n−t%, be the N -isomorph sets corresponding to P�%� and S�%�t% , %=s�s+
1�����r . If in Steps 2 and 3 x�%�i0 �x

�%�

j0
∈S�%�t% and "̂�%� are chosen according to (18)

and (19), respectively, then there exist x̄�ū1�ū2�����ūn−tr ∈�n with x̄∈L�f̂−��
such that the edges in R�k�

S
�r�
tr

converge to the ray �Ek=	ȳk�"�= x̄+"ūk �"∈�+
,

k=1�2�����n−tr for r→�.

Proof. Let us consider w.l.o.g. the N -isomorph set

R
�1�

S
�%�
t%

=	E�%�

1�1�E
�%�

2�1�����E
�%�

2t% �1

�

and let us choose from this set two arbitrary neighboring edges, say E�%�

i�1 and E
�%�

j�1.
It follows from the definition of neighborhood of cone edges that there exists a
two-dimensional affine subspace �i�j of �

n containing these edges. Furthermore,
let us define two lines �1 and �2, where the first contains x̃

�%�

i and x̃
�%�

j and the
second is parallel to �1 and intersects the cone edges E

�%�

i�1 and E
�%�

j�1 at two points,
say E�%�

i�1�1� and E
�%�

j�1�1�, with E
�%�

i�1�1� �=E�%�

j�1�1�.
Since after subdividing we define a new cone as a convex combination of the

cones CSt%
�x̃i� and CSt%

�x̃j�, the first edge of the new cone is a convex combination

of E�%�

i�1 and E
�%�

j�1 and is therefore also contained in �i�j . It is vertexed at x̃i�j �=
"i�j x̃i+�1−"i�j�x̃j and intersects the line �2 at "i�jE�%�

i�1�1�+�1−"i�j�E�%�

j�1�1�. With
this construction it is not hard to verify that if limr→��x̃�r�i − x̃�r�j �=0, which
follows from Lemma 4.1, then limr→��E�r�

i�1�1�−E�r�

j�1�1��=0, implying that E�r�

i�1

and E�r�

j�1 converge to a ray. By using arguments similar to those in Lemma 4.1
we can see that we also have limr→��E�r�

i�1�1�−E�r�

j�1�1��=0 for non-neighboring
pseudovertices x̃�r�i and x̃�r�j . Since limr→��x̃�r�i − x̃�r�j �=0 this implies that the
edges in R�1�

S
�r�
tr

converge to a ray �E1	x̄+"ū1 �"�0
 for r→� �

With the last lemma we now have the tools to prove the following theorem.

THEOREM 4.2. Under the assumptions of Lemmas 4.1 and 4.2, and under the
assumption that we confine ourselves to finding an �-global optimal solution,
where �>0, let P �=P�0�⊃P�1�⊃P�2�⊃··· be an arbitrary filter with correspond-
ing N -sets S�0�t1 �S

�1�
t1 �S

�2�
t2 ���� derived by the subdivision process described above.

Then after a finite number of iterations r0 one of the following cases holds:

1. We have identified a point x̆∈P�r0�\L�f̂−��.
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2. We have verified P�r0�⊂L�f̂−��.
3. A further decomposition of the cones derived w.r.t. P�r0� and S�r0�tr0

is possible.

Proof. If for P�r0� we face the first case in Theorem 4.2, then we have solved
the core problem. There are two situations in which we might face the second
case in Theorem 4.2. First, we have �S�r0�tr0

�=2n, which implies P�r0�⊂conv�S�r0�tr0
�⊂

int�L�f̂−���. Second, the decomposition cut derived w.r.t. P�r0� and S�r0�tr0
elimi-

nates the complete subpolytope P�r0�, i.e. we face Case 2 of Section 1.
We prove Theorem 4.2 by contradiction. To this end let us assume that we

have a filter P �=P�0�⊃P�1�⊃P�2�⊃··· with corresponding N -sets S�0�t0 �S�1�t1 �S�2�t2 ����
without encountering one of the three cases listed in Theorem 4.2. Hence, these
sequences are infinite and there exists an index %0 such that �S�%�t% �=�S�%0�t%0

� for %�%0.
Therefore, for %�%0 there exist n−t%0 N -isomorph sets R�1�

S
�%�
t%

�R
�2�

S
�%�
t%

�����R
�n−t%0 �
S
�%�
t%

with

R
�k�

S
�%�
t%

=	E�%�

1�k�E
�%�

2�k�����E
�%�

2t% �k

, k=1�2�����n−t%0 . According to Lemma 4.2 the rays

in these sets converge to rays �E1��E2������En−t%0 , respectively.
Let us consider the ray �E1. Since f̂ is the objective value of the incumbent

solution and we always check to see if a cone edge contains a point in P with
a smaller objective value, none of the rays in R�1�

S
�%�
t%

=	E�%�

1�1�E
�%�

2�1�����E
�%�

2t% �1

, %�%0,

contains points of P \L�f̂ �. Hence this is also the case for �E1. Let us denote
by �E1�"̄1� the intersection point of �E1 with L�f̂− �

2 �. Then there exists a P-
supporting hyperplane āTx=  ̄ with P⊂	x∈�n � āTx�  ̄
 that intersects �E1 at�E1�"̄1�. Furthermore, since f �x� is continuous and �E1�"̄1�∈ int�L�f̂−���, there
exists 7̄ with 7̄>0 such that B��E1�"̄1��7̄�∩	x∈�n � āTx=  ̄
 is contained in the
interior of L�f̂−��, where B�y�7� denotes the open ball with radius 7 around y.
Since the rays in R�1�

S
�%�
t%

converge to the ray �E1, there exists %1 with %1�%0 such
that each of the rays in R�1�

S
�%�
t%

intersects the hyperplane āTx=  ̄ in B��E1�"̄1�� 7̄2 �,
i.e. the intersection points are contained in int�L�f̂−���. Therefore, by using
āTx=  ̄ as a mirror hyperplane conditions 1. and 2. in CDP are fulfilled. In
general, conditions 3, and 4. are also fulfilled, but if not we can ensure their
fulfillment by shifting āTx=  ̄ a little. Hence, a further cone decomposition is
possible, which is a contradiction to the assumption. Hence we face after a finite
number of partitions one of the cases stated in Theorem 4.2. �

To prove the finiteness of the subdivision process discussed in this subsection
we had to confine ourselves to finding an �-global optimal solution, where �>0.
However, what happens when �=0?

THEOREM 4.3. Let there be the same assumptions as in Theorem 4.2. If we
are looking for an exact global optimum, i.e. �=0, then for an arbitrary filter
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P �=P�0�⊃P�1�⊃P�2�⊃··· with corresponding N -sets S�0�t0 �S
�1�
t1 �S

�2�
t2 ���� the follow-

ing holds: Either the sequences are finite or the intersection point of a cone edge
with the boundary of P converges to a point in bd�L�f̂ ��.
Proof. We prove Theorem 4.3 by contradiction. Suppose that we have an

infinite sequence of subpolytopes P �=P�0�⊃P�1�⊃P�2�⊃··· with corresponding
N -sets S�0�t0 �S

�1�
t1 �S

�2�
t2 ����. This implies that there exists an index %0 such that for

%�%0 none of the cases in Theorem 4.2 holds for any of the subpolytopes P
�%�

with corresponding N -sets S�%�t% . Furthermore, let us assume that for none of the
corresponding cones does the intersection point of a cone edge with the boundary
of P converge to a point in bd�L�f̂ ��. Then there exists �̃ with �̃>0 such that
all intersection points of the cone edges with bd�P� are contained in L�f̂− �̃�.
With arguments similar to those in the proof of Theorem 4.2 we can show that a
further decomposition is possible, which is in contradiction to the assumption.

�

According to Theorem 4.3, in the case of �=0 we get an infinite sequence of
subpolytopes if and only if all N -isomorph sets converge to rays that intersect the
boundary of P at a point lying on the boundary of L�f̂ �. Such a situation might
occur if we had only one N -isomorph set, but it is very unusual when there are
more than one N -isomorph set, i.e. t%<n−1. Since, in general, we do not have
to decompose up to a level n−1 either to find a point x̆∈P \L�f̂ � or to verify
that a subpolytope is contained in L�f̂ �, in the exact case, too, the subdivision
process will usually terminate after a finite number of iterations. Finally, note
that we get only infinite sequences of subpolytopes when the incumbent solution
is actually a global optimum.

4.3. SUBDIVISION WITHIN THE CONES

For the second subdivision method proposed, subdivision within the cones, we
assume that the cones CSt

�x̃i�, x̃i∈St, are at least two-dimensional, i.e. t�n−2.
To subdivide within the cones we define the partition hyperplane pTx=5 as a
convex combination of two inequalities of the system Ã1t x� b̃1t , where

CSt
�x̃i�=	x∈�n � Ã1t x� b̃1t �Git

x=hit 


and Ã1t x� b̃1t is a subsystem of Ax�b with n−t inequalities (see Proposition
3.2). This is based on the following observations.
Let x̃i∈St, and let Ei�1 and Ei�2 be arbitrarily chosen edges of the cone Ct

�x̃i�.
Then there exist uniquely determined inequalities ãT

1t �1
x�  ̃1t �1 and ã

T
1t �2
x�  ̃1t �2

in Ã1t x� b̃1t such that for all � >0 the following holds:

ãT
1t �1
Ei�1���< ̃1t �1�

Ã1t\	1
Ei�1���= b̃1t\	1
�
and

ãT
1t �2
Ei�2���< ̃1t �2�

Ã1t\	2
Ei�2���= b̃1t\	2
�
(25)
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For the other edges Ei�j , j=3�����t, it holds that

ãT
1t �1
Ei�j��� =  ̃1t �1 and ãT

1t �2
Ei�j��� =  ̃1t �2 (26)

for all � >0. When we define the partition hyperplane pTx=5 as

p �=�−"̃�ã1t �1+�1−"̃�ã1t �2 (27)

and

5 �=�−"̃� ̃1t �1+�1−"̃� ̃1t �2 (28)

with 0<"̃<1 we therefore have

pTEi�1��� > 5 and pTEi�2��� < 5 (29)

for � >0, and

pTEi�j���=5 (30)

for ��0 and j=3�����n−t. Hence the partition hyperplane pTx=5 separates
exactly two edges for each cone CSt

�x̃i�, x̃i∈St, and contains the remaining
edges. That is, we perform a simultaneous bisection of all cones. Based on these
observations a subdivision within the cones can be performed as follows.

Step 1� Choose x̃i∈St and two edges Ei�1 and Ei�2 of the cone CSt
�x̃i�.

Step 2� Identify those inequalities ãT
1t �1
x�  ̃1t �1 and ã

T
1t �2
x�  ̃1t �2 of Ã1t x� b̃1t for

which (25) holds.
Step 3� Choose "̃ with 0<"̃<1 and derive the partition hyperplane pTx=5

according to (27) and (28).
Step 4� Define the subpolytopes P1 �=P∩	x∈�n �pTx�5
 and P2 �=P∩	x∈

�n �pTx�5
 of P, and eliminate the inequalities ãT
1t �2
x�  ̃1t �2 and

ãT
1t �1
x�  ̃1t �1 from the P1- and P2-describing systems, respectively, since

these inequalities are now redundant.
Step 5� For all x̃i∈St define

"i �=
5−pTEi�2��̄i�2�

pTEi�1��̄i�1�−pTEi�2��̄i�2�
�

where Ei�j��̄i�j� denotes the intersection point of Ei�j with bd�L�f̂−���,
and set ūi �=�"iEi�1��̄i�1�+�1−"i�Ei�2��̄i�2��− x̃i for i=1�2�����2t.
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Step 6. For x̃i∈St the cones derived w.r.t. P1 and P2 are defined by CSt
�x̃i�=

x̃i+cone�ũi�1�ūi�ũi�3�����ũi�n−t� and CSt
�x̃i�= x̃i+cone�ūi�ũi�2�����ũi�n−t�,

respectively, i.e. the directions ũi�1 and ũi�2 are replaced by the direction
ūi.

By construction the partition hyperplane pTx=5 contains all pseudovertices
x̃i∈St. To ensure that the pseudovertices in St remain nondegenerate, in Step 4
we have to eliminate the inequalities ãT

1t �1
x�  ̃1t �1 and ã

T
1t �2
x�  ̃1t �2 from the P1-

and P2-describing systems, respectively. Note that for P1 and P2 these inequalities
are redundant.
In contrast to subdivision between the cones it is not possible to construct a

finitely convergent partition algorithm (see Theorem 4.2) that uses only subdivi-
sions within the cones. However, by choosing of x̃i∈St, and Ei�1 and Ei�2 in Step
1 and "̃ in Step 3 we can ensure that the resulting cones converge to rays. One
way to do this is the following.
In the %th iteration choose x̃�%�i ∈S�%�t% arbitrarily, and choose E�%�

i�1 and E
�%�

i�2 such
that

�E�%�

i�1��̄
�%�

i�1�−E�%�

i�2��̄
�%�

i�2��
=max	�E�%�

i�k��̄
�%�

i�k�−E�%�

i�h��̄
�%�

i�h�� �k�h=1�2�����n−t
� (31)

i.e. the distance between the intersection points of E�%�

i�1 with bd�L�f̂−��� and
E

�%�

i�2 with bd�L�f̂−��� is maximal.
Let � with 0<�� 1

2 be a prescribed constant independent of the respective iter-
ation and let "̃�%� be chosen such that with y�%�i ��� �=�E�%�

i�1��̄
�%�

i�1�+�1−��E�%�

i�2��̄
�%�

i�2�,
y
�%�

i �1−���=�1−��E�%�

i�1��̄
�%�

i�1�+�E�%�

i�2��̄
�%�

i�2�, â �= ã1t �1+ ã1t �2 and  ̂ �=  ̃1t �1+ ̃1t �2
ãT
1t �2
y
�%�

i ���− ̃1t �2
âTy

�%�

i ���− ̂
� "̃�%��

ãT
1t �2
y
�%�

i �1−��− ̃1t �2
âTy

�%�

i �1−��− ̂
(32)

holds, i.e. the resulting partition hyperplane intersects the line connect-
ing E

�%�

i�1��̄
�%�

i�1� and E
�%�

i�2��̄
�%�

i�2� between �E
�%�

i�1��̄
�%�

i�1�+�1−��E�%�

i�2��̄
�%�

i�2� and �1−
��E

�%�

i�1��̄
�%�

i�1�+�E�%�

i�2��̄
�%�

i�2�. Note that for �= 1
2 the lower and upper bound in (32)

are identical and that in this case the subdivision of the cone C
S
�%�
t%

�x̃i� can be

interpreted as an exact bisection (see Tuy, 1998). Also note that when two edges
of a cone come ‘closer together’ by subdividing within the cones, then this is
also the case for the corresponding edges of the other cones.
By using the usual concepts for verifying the exhaustiveness of a given con-

ical subdivision process, described, for instance, in Horst and Tuy (1996), the
following theorem can be proved.

THEOREM 4.4. For any infinite sequence of subdivisions within the cones for
which E

�%�

i�1 and E
�%�

i�2 are determined according to (31) and "̃�%� is determined
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according to (32), for any cone C
S
�%�
t%

�x̃i� the distance between the intersection

points of its cone edges with bd�L�f̂−��� converges to 0, i.e. the cones shrink
to rays.

Finally, note that since the edges of a cone belong to different N -isomorph
sets, subdivision within the cones can be interpreted as a subdivision between
two N -isomorph sets.

5. Partition Algorithm

In the proposed partition algorithm for the concave minimization problem (1)
we do not derive a new partition of P for each core problem encountered but
rather use a single-phase, successive partition algorithm. Note that when we have
solved the kth core problem by identifying a solution with an objective value
smaller than the best solution known so far, then for the constructed subpolytopes
the following holds. All subpolytopes for which we face Case 2 of Section 2
in the kth core problem will initially also be allotted to Case 2 in the �k+1�th
core problem. Furthermore, subpolytopes for which in the kth core problem Case
1 holds will initially be allotted to Case 3 in the �k+1�th core problem. Thus
to solve the �k+1�th core problem we only have to examine the subpolytopes
obtained by solving the kth core problem for which Case 1 or Case 3 holds. The
basic structure of the proposed successive partition algorithm is as follows.

Successive Partition Algorithm (PARTI)
Compute a star optimum x0∈P;
Set x̂ �=x0 and f̂ �=f �x0�;
Set � �=	P
;
Set S�P� �=	x0
 (initial N -set of P);
While � �=∅ do begin
select P ′ ∈�;
apply cone decomposition on P ′ and S�P ′�, if wanted and

possible, resulting in an enlarged N -set S�P ′�;
check whether one of the edges of the newly generated

cones contains a point x∈P ′ with f �x�<f̂ ;

If x∈P ′ with f �x�<f̂ was identified
then begin
find, starting with x, a star optimum x′0 with f �x

′
0��f �x�;

set x̂ �=x′0 and f̂ �=f �x′0�;
end;

Derive a decomposition cut dTx�� w.r.t. P ′ and S�P ′�;
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Determine ��=max	dTx �x∈P ′
, x� �=argmax	dTx �x∈P ′
;

If ��� and f �x��� f̂−�
then begin
find, starting with x�, a star optimum x′0 with f �x

′
0�<f̂ ;

set x̂ �=x′0 and f̂ �=f �x′0�;
end;
If �<� then set � �=� \	P ′
;

If ��� and f �x��� f̂−�
then begin
subdivide P ′ into subpolytopes P ′

1 and P
′
2 by applying

subdivision between the cones or subdivision
within the cones;

determine the corresponding N -sets S�P ′
1� and S�P

′
2�;

set � �=� \	P ′
∪	P ′
1�P

′
2
;

end;

end.

Four questions relating to Parti must still be addressed.

1. How shall we select P ′ ∈�?
2. When and how long shall we apply cone decomposition?
3. When shall we apply subdivision between the cones and when subdivision
within the cones?

4. How shall we choose "̂ in Step 3 when subdividing between the cones and "̃ in
Step 3 when subdividing within the cones to define the partition hyperplane?

In computational experiments we addressed these points as follows:

Ad 1: For each P ′ ∈� with N -set S�P ′� we determined the barycenter x∗�P ′�
of S�P ′�, and determined the point where the line connecting x∗�P ′� and
x��P

′� intersects the corresponding decomposition cut. We selected that
P ′ ∈� for which the distance from this point to x��P ′� is maximal.

Ad 2: We applied cone decomposition, which can become quite costly, only on
those subpolytopes which were the fifth successors of a subpolytope on
which cone decomposition has been applied.

Ad 3: We mainly applied subdivision between the cones. Subdivision within the
cones was only applied when a subpolytope was overdue for a further
decomposition.

Ad 4: We determined "̂ and "̃ such that the resulting partition hyperplane contains
x��P

′�=argmax	d′Tx �x∈P ′
. However, if "̂ does not fulfill inequality
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(19) or "̃ does not fulfill inequality (32), where � was chosen as �=0�2,
then set

"̂= 4j0�k

4i0�k+4j0�k
and "̃= ãT

1t �2
yi�

1
2�− ̃1t �2

âTyi�
1
2�− ̂

�

This corresponds to setting �= 1
2 .

EXAMPLE 5.1. To illustrate the working of Parti let us consider the following
three-dimensional concave minimization problem:

min	xTCx �Ax�b�x�0
�
where

C=

−2 1 0
1 −2 1
0 1 −2


� A=


1 2 32 3 1
3 1 2


� and b=


66
6




(cf. Konno 1976b). The polytope P=	x∈� �Ax�b�x�0
 has eight vertices:
�0�0�0�, �2�0�0�, �0�2�0�, �0�0�2�, �1�1�1�, � 127 �

6
7 �0�, �

6
7 �0�

12
7 �, and �0�

14
7 �
6
7�. To

illustrate in Parti all subdivision strategies we allow a maximal decomposition
depth of only 1. Furthermore, we set �=0.
In a first step we search for a star optimum. To this end let �0�0�0� be the

initial vertex in the search phase. Its objective value is 0. The neighbors are
�2�0�0�, �0�2�0� and �0�0�2�, all with an objective value of −8. We proceed
to �2�0�0�. The neighbors of �2�0�0� are �0�0�0�, � 127 �

6
7 �0�, and �

6
7 �0�

12
7 � with

objective values of 0, − 216
49 , and − 360

49 , respectively. Hence, x̃1=�2�0�0� is a star
optimum and we have

C�x̃1�=	x∈�3 ��3�1�2�x�6� �0�0�−1�x�0� �0�−1�0�x�0

= x̃1+cone�ũ1�1�ũ1�2�ũ1�3��

where ũ1�1=�−1�0�0�, ũ1�2=�− 2
7 �
6
7 �0�, and ũ1�3=�− 8

7 �0�
12
7 �.

We set �=	P
, x̂=�2�0�0� and f̂ =−8. We now enter the while-loop. We
select P ′ =P, set S�P ′�=	x̃1
 and apply cone decomposition. To decompose
C�x̃1� we choose the N -isomorph set RS�P ′�=	E1�3
 according to the heuris-
tic rules discussed in Porembski (1999), i.e. �0�0�−1�x�0 is the base hyper-
plane, and we choose �1�2�3�x�6 as mirror hyperplane. The mirror hyperplane
intersects E1�3=	x̃1+"ũ1�3 �"�0
 at x̃2=� 67 �0� 127 � which is a vertex of P with
objective value − 360

49 . Hence we get S�P
′�=	x̃1�x̃2
,

CS�P ′��x̃1�=	x∈R3 ��3�1�2�x�6� �0�0�−1�x�0� �0�−1�0�x=0

= x̃1+cone�ũ1�1�ũ1�2�



218 MARCUS POREMBSKI

and

CS�P ′��x̃2�=	x∈R3 ��3�1�2�x�6� �0�0�−1�x�0� �1�2�3�x=6

= x̃2+cone�ũ2�1�ũ2�2��

where ũ2�1=�− 6
7 �0�

2
7� and ũ2�2=� 17 �1�− 5

7�.
We determine the intersection points of the edges of CS�P ′��x̃1� and CS�P ′��x̃2�

with the boundary of L�−8�=	x∈�3 �xTCx�−8
, and derive a decomposition
cut �−0�3889�0�5444�0�3889�x�0�7778 by solving the linear program (12). To
check whether this cut eliminates the complete polytope P we solve the linear
program max	�−0�3889�0�5444�0�3889�x �x∈P
. The optimal solution is x�=
�0� 127 �

6
7� with an objective value of 1�2667. Hence a subdivision of P

′ is due.
We start with a subdivision between the cones. The partition hyperplane pTx=

5 is of the form

�"·�0�0�1�+�1−"�·�1�2�3��x=�1−"�·6
(cf. Step 3 in Section 4.2). x� lies on CS�P ′��x̃2�. Hence we must set

"= "̂= 6−�1�2�3��· x̃1
�0�0�1�x̃2+�6−�1�2�3�x̃1�

= 4
12
7 +4

= 7

10

(cf. ad 4 in Section 5 and (19)). This gives us the partition hyperplane
� 310 �

6
10 �

16
10�x= 18

10 , which is equivalent to �3�6�16�x=18. With this we obtain the
subpolytopes

P1=P∩	x∈�3 ��3�6�16�x�18
 and
P2=P∩	x∈�3 ��3�6�16�x�18
�

The new pseudovertex defined by the partition hyperplane is given by x̃1�2=
1
2 x̃1+ 1

2 x̃2=� 107 �0� 67�. With this we have for P1 and P2 the new N -sets

S�P1�=	x̃91:1 �x̃91:2 
 with x̃91:1 = x̃1 and x̃91:2 = x̃1�2 and
S�P2�=	x̃92:1 �x̃92:2 
 with x̃92:1 = x̃2 and x̃92:2 = x̃1�2�

It holds that CS�P1�
�x̃91:1 �=CS�P ′��x̃1�, CS�P2�

�x̃92:1 �=CS�P ′��x̃2� and

CS�Pi�
�x̃9i:2 �=	x∈�3 ��3�1�2�x�6� �0�−1�0�x�0� �3�6�16�x=18


= x̃9i:2 +cone�ũ9i:2�1�ũ9i:2�2�

with ũ9i:2�1=�− 1
16 �0�1�, ũ

9i:

2�2=�− 4
15 �

42
15 �−1� and i=1�2. Finally we set �=

	P1�P2
.
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In the next iteration we select P1 and derive w.r.t. P1 and S�P1� a decom-
position cut �−0�2825�0�3954�0�1147�x�0�5649. We have max	�−0�2825,
0�3954�0�1147�x �x∈P1
=0�7909 with optimal solution �0�2�0�. Hence P1 must
be explored further. We do this by subdividing P1 within the cones. We must deter-
mine ", such that the partition hyperplane "·�3�1�2�−�1−"�·�0�0�−1��x="·6
contains the vertex �0�2�0� of P1. This is the case for "= 1

3 . Thus we obtain
�1�1� 23�x=2 as partition hyperplane. Hence we have

P1�1=P1∩	x∈�3 ��1�1� 23�x�2
�
P1�2=P1∩	x∈�3 ��1�1� 23�x�2
�

�=	P1�1�P1�2�P2
 and S�P1�1�=S�P1�2�=S�P1�. We must replace the second
directions by the directions �−1�1�0� and �−4� 143 �−1�, respectively, in the cones
CS�P1�

�x̃91:1 � and CS�P1�
�x̃91:2 � to obtain the cones CS�P1�1�

�x̃91:j �, j=1�2, for approxi-
mating P1�1. To obtain the cones for approximating P1�2 the first directions must
be replaced.
In the next iteration we select P1�1∈� and derive w.r.t. P1�1 and S�P1�1� a

decomposition cut �−0�2825�0�2825�0�1147�x�0�565. P1�1 is completely elimi-
nated by this cut. Hence we have �=	P1�2�P2
.
In the next iteration we select P1�2∈� and derive the decomposition cut

�−0�0985�0�3940�−0�1005�x�0�7881 which completely eliminates P1�2, i.e. we
have �=	P2
.
Therefore, in the next iteration only P2 remains for selection. We

derive the decomposition cut �−0�3530�0�9175�0�8352�x�1�6705. We
have max	�−0�3530�0�9175�0�8352�x �x∈P2
=0�7909 with optimal solution
�0� 127 �

6
7�. Hence P2 is not completely eliminated by this cut and must be fur-

ther subdivided. To this end we apply subdivision within the cones. The partition
hyperplane obtained from the constraints �3�1�2�x�6 and �0�−1�0�x�0 must
contain �0� 127 �

6
7�. We determine "= 2

5 , which gives us the partition hyperplane
� 65 �1�

4
5�x= 12

5 and is equivalent to �6�5�4�x=12. We subdivide P2 into
P2�1=P2∩	x∈�3 ��6�5�4�x�12
 and
P2�2=P2∩	x∈�3 ��6�5�4�x�12
�

The corresponding N -sets are S�P2�1�=S�P2�2�=S�P2�. Thus we have �=
	P2�1�P2�2
.
In the next iteration we select P2�1∈� and derive a decomposition cut

�−0�3530�0�4965�0�8352�x�1�6700. This cut completely eliminates P2�1. Hence
�=	P2�2
.
In the next iteration only P2�2 remains for selection. We derive a decomposition

cut �−0�0532�0�4399�0�058�x�0�9466 which completely eliminates P2�2. Hence
we have �=∅, and the algorithm is terminated. �0�2�0� with an objective value
of −8 is a global optimum.
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Note that we only allowed a maximal decomposition depth of 1. If we would
have allowed a maximal decomposition depth of 2 or 3 the concave minimiza-
tion problem would have been solved in the first iteration without the need for
subdivisions. �

As we can see with Theorem 4.2, a successive partition algorithm using only
subdivisions between the cones is finitely convergent as long as we decompose
the cones whenever possible. However, the finite convergence of the algorithm
can also be ensured by subdividing from time to time within the cones. In this
way we can avoid cone decompositions that might be time-consuming when
the actual level of decomposition is already deep without endangering the finite
convergence of the partition algorithm. The following holds.

THEOREM 5.1. In Parti let the partition hyperplanes defining values of "̂�%� and
"̃�%� fulfill (19) and (32). Furthermore, after a finite number of subdivision within
the cones let Parti always perform a subdivision between the cones and vice
versa. Then Parti terminates after a finite number of iterations with an �-global
optimal solution.
Proof. We prove Theorem 5.1 by contradiction. To this end let us assume that

Parti is infinite, i.e. there exists an infinite filter. Hence we have P �=P�0�⊃
P�1�⊃···, and in this filter we have infinite sequences of subdivisions between
the cones and within the cones. Furthermore, there exists %0 such that for all
iterations %�%0 no further cone decomposition is performed, i.e. the number of
pseudovertices in S�%�t% remain constant for %�%0, and a k0 such that after iteration
k0 none of the edges of the newly generated cones contains a point in P \L�f̂ �.
Note that the number of star optima is finite. Let w.l.o.g. %0�k0.
For %�%0 we always have n−t%0 N -isomorph sets. According to Lemma

4.1 and 4.2 the edges in the n−t%0 N -isomorph sets converge in an infinite
sequence of subdivisions between the cones to n−t%0 rays that are vertexed
at a point x̄∈L�f̂−��. Furthermore, according to Theorem 4.4, by performing
subdivisions within the cones the cones shrink to rays. Therefore, the edges of
all cones converge to a ray x̄+"û, "�0. Since none of the cone edges contains
a point x∈P \L�f̂ �, the ray x̄+"û, "�0 also contains no point in P \L�f̂ �,
i.e. 	x̄+"û �"�0
∩P⊂L�f̂ �.
Let x̄+"̂û be the intersection point of x̄+"û, "�0 with bd�L�f̂−���, and let

7̂ �= ûT�x̄+"̂û�. To derive a decomposition cut we determine the barycenter x̄�%�
of S�%�t% (see (10)) and an ‘average’ direction ū

�%� of the edges of the corresponding
cones (see (11)). The depth ;% of a decomposition cut d

T
% x��% can be measured

as the distance from x̄�%� to the point where it intersects the ray x̄�%�+"ū�%�, "�0.
Note that for %→� the ray x̄�%�+"ū�%�, "�0 converges to the ray x̄+"û, "�0.
Hence we can interpret ûTx= 7̂ as a decomposition cut with depth ;̂ �= "̂�û�,
and it holds

lim
%→�

;%= ;̂� (33)
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It follows from (33) and from the convergence of the cone edges to the ray
x̄+"û, "�0, that there exists %1 with %1�%0 such that for the decomposition
cut dT

% x��% for %�%1 the following hold. First, the decomposition cut d
T
% x��%

intersects all edges of the cone C�%�

S%
�x̃i�, x̃i∈S�%�t% , in L�f̂−��\L�f̂ �. Second, the

convex hull of these intersection points is contained in L�f̂−��\L�f̂ �. Since
otherwise at least one cone edge would contain a point in L�f̂−��\L�f̂ �, there
exists %2 such that P

�%�⊂L�f̂ � for %�%2. This implies that the decomposition
cut dT

%̂
x��%̂ with %̂ �=max	%1�%2
 eliminates P�%̂� and no further subdivision is

due, which is a contradiction. Hence, only finite sequences of subpolytopes are
derived, which implies the finiteness of Parti. �

With Theorem 4.3 and the concepts discussed in the proof of Theorem 5.1 we
can prove the following theorem.

THEOREM 5.2. Let there be the same assumptions as in Theorem 5.1. For �=0
Parti either terminates at an exact global optimum after a finite number of
iterations, or else it involves an infinite sequence of subdivisions. The latter case
can occur only if the current best solution is actually globally optimal.

6. Numerical Experiments

In this section we compare the performance of the partition algorithm, Parti,
with the performance of a pure cutting plane algorithm using decomposition
cuts, Deco Cut. Additionally we compare the performance of both with the
performance of the well-known conical algorithm, Conical. The pure cutting
plane algorithm was implemented as proposed in Porembski (1999) and for the
conical algorithm we implemented the version proposed in Jaumard and Meyer
(1998).
We implemented the algorithms using MatLab 6.1 with Optimization Toolbox.

There also exists a toolbox that allows one to convert MatLab code into C/C++
code. The advantage of doing this is that the programs run much faster (by a
factor of 10 and more) since C/C++ is a compiled programming language whereas
MatLab is an interpreted programming language. Unfortunately, this toolbox was
not available to us. The computer used was an 500 MHz Pentium III PC with
256 MB RAM. The operating system was Windows 2000 Professional.
We tested the algorithms on several problems. The following objective func-

tions taken from the literature (cf. Konno 1976b; and Locatelli and Thoai, 2000),
have been considered.

fKonno�x�=−2
n∑
j=1
<2j +2

n−1∑
j=1
<j<j+1

fLT1�x�=−3
n∑
j=1
<2j +2

n−1∑
j=1
<j<j+1
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fLT2�x�=−
( n∑
j=1
<2j

)
log

(
1+

n∑
j=1
<2j

)
�

As feasible regions we considered Konno’s polytope (cf. Konno, 1976b)

PKonno=	x∈�n �Anx�bn� x�0
�

where

An �=



1 2 ··· n−1 n
2 3 ··· n 1
���
���

���
���

n 1 ··· n−2 n−1


 and bn �=

n�n+1�
2

e

and e is a vector of n ones. Additionally we consider randomly generated
polytopes

PBret=	x∈�nAm�nx�bm� e
Tx�n+5� x�0
�

Table 1. Performance of Conical, Deco Cut and Parti

Obj. Pol. n m Iterations CPU time

Conic. Deco C. Parti Conic. Deco C. Parti

fKonno PKonno 4 8 11 4�3� 1 1�61 2�54 0�57
fKonno PKonno 5 10 14 3�4� 1 3�42 2�95 1�07
fKonno PKonno 6 12 27 5�5� 1 6�64 7�05 2�03
fKonno PKonno 7 14 65 8�4� 2 19�82 16�09 4�18
fKonno PKonno 8 16 138 24�5� 2 121�22 105�25 9�50
fKonno PKonno 9 18 393 5�8� 3 172�33 77�23 29�66
fKonno PKonno 10 20 732 4�9� 5 350�74 149�02 67�05
fKonno PKonno 11 21 2251 6�9� 5 988�66 211�81 131�40
fLT1 PKonno 7 14 55 3�4� 2 24�67 3�53 1�73
fLT1 PKonno 8 16 134 16�7� 5 36�98 25�23 3�53
fLT1 PKonno 9 18 221 12�7� 5 151�32 33�51 6�57
fLT1 PKonno 10 20 516 6�9� 6 263�77 125�13 35�81
fLT1 PKonno 11 22 — 16�6� 8 — 331�52 150�67
fLT2 PKonno 8 16 97 5�6� 2 43�18 6�01 2�81
fLT2 PKonno 9 18 291 3�8� 3 145�87 56�58 37�19
fLT2 PKonno 10 20 538 5�8� 4 267�66 178�56 89�99
fLT2 PKonno 11 22 — 6�8� 5 — 235�58 132�71
fLT2 PKonno 12 24 — 8�6� 5 — 283�18 131�76
fLT1 PBrett 7 14 25 2�5� 1 5�32 6�58 2�11
fLT1 PBrett 8 16 76 6�6� 2 21�98 9�01 5�32
fLT1 PBrett 9 18 156 8�6� 4 87�82 26�17 11�10
fLT1 PBrett 10 20 332 9�6� 5 211�18 33�67 15�66
fLT1 PBrett 11 22 — 11�6� 9 — 56�51 45�99
fLT2 PBrett 8 16 55 3�6� 2 23�67 8�67 3�22
fLT2 PBrett 9 18 121 4�6� 2 43�67 9�01 5�62
fLT2 PBrett 10 20 189 6�8� 2 89�43 53�36 32�17
fLT2 PBrett 11 22 1325 8�8� 5 1231�64 99�54 43�61
fLT2 PBrett 12 24 — 10�6� 4 — 187�63 82�15
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where Am�n∈�m×n and bm∈�m. To construct Am�n and bm we follow an approach
proposed by Bretthauer and Cabot (1994). Each element =ij of Am�n is a pseudo-
random number uniformly distributed on the interval 9−1�1:. Each element  i
of bm is generated as  i=

∑n
j=1 �aij �+2yi, where yi is a pseudo-random number

uniformly distributed on the interval 90�1:. The constraint eTx�n+5 in PBret was
added to ensure that PBret is bounded. The accuracy was chosen as �=10−1.
The results of the experiments can be found in Table 1. Conic. and Deco C.

in the column heads stand for Conical and Deco Cut, respectively. ‘Obj.’ and
‘Pol.’ refer to the objective function and the polytope used, ‘n’ is the number of
variables, ‘m’ is the number of restrictions. The maximal decomposition depth
allowed in Deco Cut is indicated by a superscript in parentheses in the first
Deco C. column. We allowed the algorithms a maximum time of 7,200 seconds
(= 2 hours) to converge. Then the algorithm was terminated, which is indicated
in the table by a hyphen.

7. Concluding Remarks

In this paper a new successive partition algorithm for concave minimization is
proposed. The algorithm is based on cone decomposition and decomposition cuts,
concepts that have already been applied in pure cutting plane algorithms for
concave minimization. The basic structure of the proposed algorithm resembles
that of conical partition algorithms. Therefore, the algorithm can be extended to
a branch-and-bound variant or to a two-phase scheme in a way similar to that
used for conical algorithms (see, e.g., Horst and Tuy, 1996).
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